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INTRODUCTION

In [12] R. C. James proved the following assertions for ¥ a Banach
space with an unconditional basis {e,}, :

(WSC) E is weakly sequentially complete if and only if E contains no
1somorphic copy of e, ;

(R) Eisreflexive if and only -if E contains no isomorphic copy of e,
and 1, ;

" (RNP) E’' is separable if and only if E contains no isomorphic copy
of 1. :

Later Lozanovski [19], [20] proved (WSC) and (R) for Banach lat-
tices but his approach covers also the case where E embeds into a &-com-
plete Banach lattice having order continuous norm. Related results were
discussed by Lotz [17], Meyer-Nieberg [21] and Tzafriri [29]. In a con-
versation, in 1974, H. Lotz showed us a proof that (RN P) holds for every
separable Banach lathce

The first section of our paper is concerned with preduals of Banach
lattices. A Banach space F is said to be a predual of the Banach space E
if ¥’ is isometric to E. The main result (see Theorem 1.1 below, asserts
that given an ordered Banach space E which contains no isomorphic
copy of e, then E’is a Banach lattice if and only if E itself is a Banach
lattice. Particularly (WSC) and (R) both remain valid in the framework
of ordered preduals of Banach lattices. It is proved also that if E does not
contain an isomorphie copy of e, and E’ is a Banach lattice then E is the
unique (up to isometry) ordered predual of E’. That extends the well
known fact that a space Le(@) has a unique (up to isometry) predual.

In the second section we discuss a geometrical condition in order
that the dual of a Banach lattice E having a weak order unit (i.e a total
element) fails such a unit: the presence in E’ of a lattice isomorph of
I,(T) for T' an uncountable set of indices. See Corollary 2.5 below. Under
additional assumptions this condition is seen to be equivalent to the fact that

E’ is not weakly compactly generated. See Theorem 2.7 below. That ex-
tends an important result due to Rosenthal [25].
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234 CONSTANTIN NICULESCU 2

In the third section we establish (RN P) for separable Banach spa-
ces E having local unconditional structure in the sense of Gordon and
Lewis [6] i.e. E” is complemented in a Banach lattice. See Theorem 3.3
below. As a consequence we obtain that the recent example (due to
R. C. James [13]) of a somewhat reflexive Banach space with a nonsepa-
rable dual fails loecal unconditional structure.

The main results presented in the second and the third section have
been announced in [22].

1. PREDUALS OF BANACH LATTICE

We shall denote by &, the class of all Banach spaces E equipped with
a closed cone C such that ; ‘

L,) (E, C) has the Riesz decomposition property

Ly,) —y < @ <y implies || <[yl

L;) For each v € B, |x| <1 there exists aye E with [[y] <1,

y =>4 @
Here z > 0 means precisely that « e C.

By Theorem 1 in [14], page 18, E’ is order isometric to a Banach
lattice. It is also well known (see [3]) that each ordered Banach space
E whose topological dual is a Banach lattice satisfies L, — L3 for

C={vek; 2'(x) =0 for all 2" € E’, 2" > 0}

The class &, was investigated especially in connection with the study
of L,(w)-preduals spaces. See [16] for details. Our approach is based on the
general theory of AM and AL spaces in the sense of Kakutani.

Let B e %,. For each e E, #>0, we can consider the following
vector space:

E,={yeE;A)2>0,)0 >+ y}
normed by :
9l =inf {2>0; Mo > +y}

By Theorem 6 in [14], page 16, (E;)’ is order isometric to a space
Ly(p), for u a suitable positive Radon measure.

If E is supposed to be a Banach lattice then a classical result due to
Kakutani yields that E, is lattice isometric to a C(S) space.

We shall denote by ¢, : E, — FE the canonical inclusion.

- For each z' € E’, ' >0, consider on E the following relation of
equivalence :

2~0(W)ex>03)y. > 4+ 2, 2'(y.) < =

The completion of E/~ with respect to the additive norm :

2|l = inf{a'(y); ¥y > £ @}
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3 PREDUALS OF BANAICH LATTICES 235

will be denoted by L,(z’') and the canonical mapping E — L(2') by j. .
Notice that (j,-)’ = 4., and Ly(2’)" is order isometric to (E’), for each
' e B2 >0.

. In [8] (see also [14]) page 96) Grothendieck remarked that each dual
O(S) space has a unique (up to isometry) predual. This fact together a
classical result due to Kakutani shows that each L,(x’) space is order iso-
metric to an L;(1) space, for p a suitable positive Radon measure. Ano-
ther useful remark is that for each x € E, # > 0, there exists an order iso-
morphism p, from L,(z) into (E,)" satisfying the following two conditions :

Pz sz = (13;)’
” Pz ” = ”( Pz)_lll =1

Our next result shows that the non lattice ¥ —theory requires the
presence of e, :

1.1. THEOREM. Let E e %, be a Banach space which contains no
1somorphic copy of e,. Then: )

(i) E is order isometric to a Banach lattice

(ii) B’ has an unique (up to isometry) ordered predual.

Proof. (i) Let = € B, x > 0. Because E contains no isomorphic copy
of e,, a result due to Lindenstrauss and Tzafriri (see [16], page 184) im-
plies that the mapping ¢, is weakly compact and thus (i) (E,)" < E.
On the other hand (z,)"" = (j,)" o (¢;)" and (p.)’ is onto. Then : .

m(j,) < Tm(,)" < E

the closure being considered in the norm topology of E. In other words
the ideal (E'’),, generated by z in E", is contained in ¥ and thus the mo-
dulus (calculated in E'’) of each x € F belongs also to E.

(ii). Let Z be the closed subspace of all order continuous functio-
nals 2" € E" i.e.

2y 4 0 (in order) implies z"(x;) — 0

and let Y be an ordered predual of E’. Then there exists an isometry
¢ :Y — Z given by :

e(y)(@'), =<y, @)

for every y e Y, #' € E’. By (i) and Proposition 2.4 (d) in [17] it follows
that B = Z, which in turn implies that Y is isometric to E, q.e.d.

1.2. CoROLLARY. Let E be an ordered Banach space which contains no
isomorphic copy of e,. Then E' is isometric to a Banach lattice if and only
if B itself is isometric to a Banach lattice.



236 CONSTANTIN NICULESCU 4

After this paper has been accepted for publication, Professor

Lacey has informed us of the following simple proof of Corollary 1.2:
Let ¢ ¢ B and look at all upper bounds of {#, 0}; this collection .is
downwards directed by the interpolatory property. If it does not

converge then there is an ¢ >0 and a decreasing sequence {Za}a 80,

that |[@es, — &, ||=¢ for all n. It follows that Sp {Bpi1— Tn}n~ Cq q.0:d-

The Banach lattice Jh= (Y @ l(n)), is weakly sequentially com-
plete and thus, by our Theorem 1.1 (ii) above, Jh is the only ordered

predual of (Jh)' = (Y @ Li(n)).. However (Jh) contains a comple™

mented copy of 1, (see W. B. Johnson, Israel J. Math. 13 (1972), 301—310),
and, 1, fails an unique predual. In connection with this example we
ask the following :

1.3. PROBLEM. Does there exist a Banach lattice E such that E con-
tains an isomorph of €, and E' has a unique (up to isometry) predual?

2. WEAK ORDER UNITS

In this section we discuss a geometrical condition for the existence
of a weak order unit in the dual of a separable Banach lattice : the non
existence of a lattice isomorph of a space L(I') for I' an uncountable set.

We need a preliminary result which works for all separable spaces
in # and also for all Banach lattice having a weak order unit. Here

& denotes the class of all preduals of Banach lattices. s 1o

2.1. LEMMA. Let E € & such that for a suitable v e E" we have : = ii::

ok %

zeB,| x| A\ |v] =0 implies z = 0.

Then there exists an order complete Banach lattice M(E) with a weolk
order unit and a lattice isometry i :E' — M(E)" such that : : -
(a) i(B') is complemented in M(E)’,

(b) i(E') is formed by order continuous functionals on M(E). dee:

Thus M(E) plays the same role as Le[0.1] for E = C[0.1] and (b
extends a well known lemma due to Dini. T

Proof. We shall consider for M(E) the band generated by » in E”.
Then a lattice isometry i: E' — M(E)' is given by:

i(a')(e) =<', ) |
for every z' €E’, e < M(E). Let j :E — M(E) the canonical inclusion. Then’
(j o i)@") (w) = (i(a"), j(x)y = <@, a)
for every « € E, #' € E’, which implies the existence of a positive projec-:
tion P : M(E) — «(E"). » ok
The second assertion is an easy consequence of the following result

due to Riesz: if Z is a Banach lattice and f, | 0 in Z' then fa(2) = 0 for.
every z € Z, q.e.d. ' Liay

IfZisa
space, we shal
band generarte

2.2. TH
the band gene
either :

(i) = (4

(ii) A e
complemented

Proof. |
plete Banach
continuous fi
onals ©’' € E'

By Zor
normalized e

Put :

and for each
[2] denotes
Notice
for each 7 €F
The fo!
(1) Ca
shall denote

Then -

Because Z(
(2) C
TeLZ (A

for every !

for n.— 13
> N,. By
is complen



S

5 PREDUALS OF BANACH LATTICES 937

If Z is an order complete Banach lattice and A <= Z is a closed sub-
space, we shall denote by Z(A) an order complete closed sublattice of the
band generated by A such that A < X(A).

2.2. THEOREM. Let E € & be a Banach space which is contained in
the band generated by a positive v € B''. If A is a closed subspace of E' then
either :

(i) = (A) has a weak order unit ; or

(ii) A contains an isomorph of L(T') (for T' an uncountable set) which 18
complemented in X(A) and X(A) contains a lattice isomorph of L,(T").

Proof. By Lemma 2.1 above we can assume that E is an order com-
plete Banach lattice with a weak order unit # and A is formed by order
continuous functionals. The subspace E’, of all order o-continuous funecti-
onals #’ € E' constitutes a band (see [28] page 74) and thus X%(A) < E;.

By Zorn’' s lemma there exists a family {u/};e; of pairwise disjoint
normalized elements of X(A4) such that :

v e S(A),sap (|2'| A juil) = 0implies ' = 0.
Put :
H={iel;3)acd,lal <1,[u;]a; #0}

and for each 7 € H, choose an a; € A with ||a;|| < 1 and [u;]a; # 0. Here
[#2] denotes the band projection generated by =z.

Notice that # = sup (¢ A nu) for each z € E, x > 0, and [u;]a; € B,
for each 7 eH. Then for each 7 € H we’'can find an ¢; €[0, ] with ([u;]a,).;=o-

The following two possibilities occur :

(1) Card H < X, and thus by identifying H as a subset of N we
shall denote :

w =Y 2"ul
neH
Then u' € X(A)and :
z'ed,|x'| A u =0 impliesz’ = 0.

Because Z(4)< A, it follows that 4’ is a weak order unit for X(A).

(2) Card H > N, and in this case we shall consider the operator
T el(Z(A),1,(H))given by :

T(a') = {([] @ )eien
for every 2’ € X(A). Notice that | T| < iu] and T(e;) # 0, 1€ H. Put
H, ={icH;|T(a,)i)| < 1/n)

forn =1,2, ... Then H = U H, and there exists an n, with Card H,, >

> K- By Lemma 11in [25], A contams a non separable L,(I') space Wthh
is complemented in X(4).
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Notice that T([u;]a;) #0 for each ¢ € H and the elements [u;]a; are
pairwise disjoint. Then the proof of Lemma 1.1 in [25] easily yields the
existence of an uncountable family

{20}oea = Abco {[uila;; € H}

which is equivalent to the vector unit basis of 1,(Q). Here Abco Z means
the absolute convex hull of Z. Put:

J={ieH; A)oecQ, |z, Alluila;| # 0.

{  Then Card J > N, (otherwise {z,}, would be contained in a sepa-
rable space) and because each z, is a finite combination of the elements
[ui]a;, there exists an uncountable subset of {z,}, formed by pairwise
disjoint elements, q.e.d.

2.3. REMARK. The two possibilities of Theorem 2.2 are mutually
exclusive. In fact, by Lemma 2.1 it suffices to consider the case where K
is an order complete Banach lattice with a weak order unit #>0 and "
is a positive element of E; such that [4'] contains a pairwise disjoint
normalized family {e/}. er which is equivalent to the unit vector basis of
a non separable L,(T'). Since u’ e Eg, ([u'| A |ey|)u # 0 for each v e I'.
Then there exists an n, € [N and an uncountable subset I'y = I' with
(w' A |eslu = 1/n,foreach y € I'. Consequently :

w'(u) > sup (N A |ey)u; Card P < 00} = o0
YEF

contradiction.
2.4. REMARK. It is possible that E and E' both have a weak order
unit and E' contains a complemented isomorph (but not a lattice tsomorph)

of 11(2[N). For example, consider £ = (2@ lu(n)),: See [11] for details.

2.5. COROLLARY. Let E be a Banach lattice with a weak order wunit.
Then either E’ contains a weak order unit or E' contains a lattice isomorph
of a non separable 1,(T') space.

Professor R. G. Bartle has kindly informed us that H. P. Lotz and
H. Rosenthal (Urbana) have obtained results related to Corollary 2.5
above.

2.6. COROLLARY. Let E be an order complete Banach lattice such that
E' has a weak order unit. Then either E contains a weak order wnit or K
eontains a lattice isomorph of a mon separable 1,(I') space.

A special case of our Theorem 2.2 is the following :

2.7. THEOREM. Let E € % be a Banach space which i3 contained in the
band generated by a suitable v € E”. If E contains no complemented copy cf
1, and A is a closed subspace of E' then either :

(i) A is contained in a weakly compactly generated sublattice of E'
having a weak order unit; or, :

(ii) A contains an isomorph of a non separable 1,(T') space that is com-
plemented in E'.
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Proof. By [1], E’ contains no isomorphic copy of e, and thus by
Propositions 2.1 and 2.4 in [17] the order intervals of E’ are re]atlvelv
weakly compact and the topology of E’ is order continuous i.e. . | 0
(in order) implies || , || — O.

Then [2] =z'* = Span [0, 2] for each z € E’, z > 0, and our result
follows from Theorem 2.2 above, q.e.d.

2.8. REMARK. If F is a Banach lattice and u’ is a positive element
of E’ then [u’] contains precisely those functionals x'e E' which are absolu-
lely continuous with respect to u’, i.e.

(AC) For every > 0 and every v € E, x > 0, there exists a § =
= 3(&, ) > Osuch that:

lyl < o, w'(ly]) < 3 tmplies|2'(y)] < e.

See [2] for details. Consequently for E a O(S) space our Theorem
above implies Lemma 1.3 in [25].

-

2.7

3. THE RADON-NIKODYM PROPERTY

In 1975, at the Kent University conference on the Radon-Nikodym
property, H. Lotz proved the following result :

3.1. THEOREM. Let E be a Banach lattice such that E' has a weak
order unit and let A be a closed subspace of E. Then either :

(i) A contains an isomorphic copy of ¢,; or

(ii) A’ s weakly compactly generated.

We next present similar results in the setting of Banach spaces
having local unconditional structure.

The unconditional basis constant y(E) of a Banach space E is the
least constant A having the followmg property : there exists a basis {e;};e;
for E such that ||Zaae;|| < » whenever X a;e; € E has norm one and
| ;] < 1,¢ € 1. If not, such A exists, y(E) = oo.

3.2. DEFINITION. A Banach space E is said to have local uncondi-
tional structure (l.u.st.) in the sense of Gordon and Iewis [6] if E satisfies
one of the following equivalent conditions :

(i) There exists a h > 0 such that for any finite dimensional subspace
F c E one can find a space U and operators o € L(F, U), pe L(U. E)
such that Boa s the identity on F and

el I1BI x(U) < A

(ii) B is complemented in a Banach lattice

(iii) There exists an isomorphism h from E into a Banach lattice L and
a g L(E',L')withh' o ¢ =15.

The equivalence (i) & (ii) was remarked in [5] while (ii) & (iii) is
Immediate.

A stronger concept of l.u.st. was introduced by Dubinski, Pelezynski
and Rosenthal. See [5] for details.

€ — C 7697
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3.3. THEOREM. For a separable Banach space F having lu.st. the
following assertions are equivalent :

(i) E’ is separable

(ii) E does not contain a copy of 1,

(iii) B’ is weakly compactly generated.

Proof. (i) = (ii). In fact, if a Banach space Z contains an isomorph
of 1, then Z’ has a quotient space isomorphic to I, which in turn implies
that Z' is nonseparable.

(ii) = (iii). Let &, ¢ and L be as in Definition 3.2 (iii) above. Since K
is separable, we may assume that L is separable.

Since E is separable and contains no isomorphic copy of L, E’ con-
tains no isomorphic copy or 1; (I') for I" an uncountable set (see [23]),50
by our Theorem 2.2 above it follows that ¢(E’) is contained in the band
generated by a positive u’ € L.

A result due to Bessaga and Felezynski [1] implies that E’ contains
no isomorphic copy of e, and thus the composition h, =h' o ir : (L), B’
is weakly compact for each 2’ € L', &’ > 0. See [26], Theorem 3.7.

Since (I')y = (I4(z’))’ has the Dunford-Pettis property, h,, maps
decreasing sequences of positive elements of (L’),, into converging se-
quences of elements of E’. See Praposition 1 and Theorem 1 in [7].On
the other hand h, = (jo o k) is w’-continuous and thus h, is order
o-continuous for each ' > 0. Consequently :

E’ = Span 1'[0,w'] = Span (hy) [0,u']

and we already remarked that &, is weakly compact. ‘

The implication (iii) = (i) is an easy consequence of the following
result due to Davis, Figiel, Johnson and Pelczynski [4]: a Banach space
Z is weakly compactly generated if there exists a reflexive space R and
a one to one operator T € (R, Z) with T(R) dense in Z, q. e.d.

3.4. COROLLARY. Let E be a Banach space with. l.u.st. Then the follo-
wing assertions are equivalent : )

(i) E contains no isomorphic copy of 1

(ii) B’ has the Radon-Nikodym property i.e. every absolutely summing
operator from a space O(S) into E' is nuclear.

Proof. (i) = (ii) If T € £(0(8), E’) is absolutely summing then' T
admits a factorization C(S) - Ly(p) 5 E’ where u is a positive Radon
measure on S and ¢ denotes the canonical inclusion. See Proposition 2.3.4
in [24]. Clearly ¢ is weakly compact and T"' = (¢’ o U'|E)’. By Theorem

1in [7]it follows that ¢’ :Le(p) — C(S)’ maps weak Cauchy sequences into

converging sequences. Because E contains no isomorphic copy of 1,, each
bounded sequence in E has a weak Cauchy subsequence (see [27]) and
thus i’o U’ |E and T are compact operators. Consequently we have only
to prove that each separable subspace of E’ has the Radon-Nikodym pro-

perty. :
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It is easy to show that each Separable subspace of B’ embeds into
a space F' for F a suitable separable sub-space of E. It wag noted in [9],
Ppage 134, that each separable dual Space has the Radon-N ikodym pro-
perty and thus in order to brove (ii) it suffices to prove that each separa-
ble subspace of E has 3 Separable dual. On the other hand if Z has l.u.st.
and Y is a separable subspace of Z then there exists a separable Banach
space .Y with Lu.st. such that ¥ - X < Z. Use Definition 3.2 (ii) above.
Then we can assume that E itself is separable and our result follows from
Theorem 3.3.

(ii) = (i). Since the canonical inclusion C[0,1] — L,[0,1] is not
nuclear but absolutely summing, E’ contains no isomorphic copy of
L,[0,1], which in turn implies (see [23]) that B contains no isomorphic
copy of 1,,q.e.d.

3.5. REMARK. A Banach Space F with local unconditional structure
is reflexive if (and only if) I, does not isomorphicaly embed in E and E'.

Consequently, a separable Banach space E with local unconditional
structure is reflexive if ' contains no isomorph of 1, if E” isseparable.

Proof. Since F contains no isomorph of 1, then E’ contains no iso-
morph of ¢,. See [1]for details,. Then Theorem 1 in [30]and Theorem 13 in
[29] together imply that B’ is weakly sequentially complete. By [27 Jany
bounded subset of E’ is weakly sequentially brecompact, and our result
follows.
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